SNSB
Summer Term 2013
Ergodic Theory and Additive
Combinatorics
Laurenţiu Leuştean
28.05.2013

Seminar 5

(S5.1) Let us consider the following statements
$(\mathbf{v d W} 1) \quad$ Let $r \in \mathbb{Z}_{+}$and $\mathbb{N}=\bigcup_{i=1}^{r} C_{i}$. For any $k \geq 1$ there exists $i \in[1, r]$ such that C_{i} contains an arithmetic progression of length k.
(vdW2) Let $r \in \mathbb{Z}_{+}$and $\mathbb{N}=\bigcup_{i=1}^{r} C_{i}$. There exists $i \in[1, r]$ such that C_{i} contains arithmetic progression of arbitrary finite length.
(vdW3) Let $r \in \mathbb{Z}_{+}$and $\mathbb{N}=\bigcup_{i=1}^{r} C_{i}$. For any finite set $F \subseteq \mathbb{N}$ there exists $i \in[1, r]$ such that C_{i} contains affine images of F.
(vdW4) Let $r \in \mathbb{Z}_{+}$and $\mathbb{N}=\bigcup_{i=1}^{r} C_{i}$. There exists $i \in[1, r]$ such that C_{i} contains affine images of every finite set $F \subseteq \mathbb{N}$.
Let ($\mathbf{v d W i} *), i=1,2,3,4$ be the statements obtained from ($\mathbf{v d W i}$) $, i=1,2,3,4$ by changing \mathbb{N} to \mathbb{Z} in their formulations.

Prove that $(\mathbf{v d W i}),(\mathbf{v d W i} *), i=1,2,3,4$ are all equivalent.
Proof. $(\mathrm{vdW} 2) \Rightarrow(\mathrm{vdW}),(\mathrm{vdW} 4) \Rightarrow(\mathrm{vdW} 3)$ are obvious.
$(\mathbf{v d W} \mathbf{1}) \Rightarrow(\mathbf{v d W} 2)$ By ($\mathbf{v d W} 1)$ we know that for every $k \in \mathbb{N}$ there exists $i \in[1, r]$ such that C_{i} contains an arithmetic progression of length k. Since $[1, r]$ is finite, it follows that one of C_{i} 's will occur for infinitely many k. That is, there exists $i \in[1, r]$ such that C_{i} contains arithmetic progressions of length k for every $k \in K \subseteq \mathbb{N}$, where K is infinite.

It follows easily that this C_{i} is the desired one. For $l \geq 1$, there exists $k \in K$ such that $l \leq k$, since K is infinite. We get that C_{i} contains an arithmetic progression $\{a, a+$ $d, \ldots a+(k-1) d\}$ of length k. Since $l \leq k$,

$$
\{a, a+d, \ldots a+(l-1) d\} \subseteq\{a, a+d, \ldots a+(k-1) d\} \subseteq C_{i},
$$

hence C_{i} contains an arithmetic progression of length l.
$(\mathbf{v d W} 2) \Rightarrow(\mathbf{v d W} 4)$ Let i be as in (vdW2). If $F \subseteq \mathbb{N}$ is a finite set, then $F \subseteq\{0, \ldots, k-$
$1\}$ for some $k \geq 1$. By (vdW2), C_{i} contains an arithmetic progression of length k. so there are $a, d \in \mathbb{N}$ such that $\{a, a+d, \ldots a+(k-1) d\} \subseteq C_{i}$. It follows that C_{i} contains the affine image $a+d F$ of F.
$(\mathbf{v d W} \mathbf{3}) \Rightarrow(\mathbf{v d W} \mathbf{1})$ is immediate since any arithmetic progression $\{a, a+d, \ldots a+(k-1) d\}$ of length k is an affine image of the set $F=\{0, \ldots, k-1\}$.
$(\mathbf{v d W} \mathbf{1}) \Rightarrow(\mathbf{v d W} \mathbf{1} *)$ Let $r, k \in \mathbb{Z}_{+}$and $\mathbb{Z}=\bigcup_{i=1}^{r} C_{i}$. Then $\mathbb{N}=\bigcup_{i=1}^{r}\left(C_{i} \cap \mathbb{N}\right)$, and by taking the nonempty $C_{i} \cap \mathbb{N}$'s, we get a finite partition of \mathbb{N}. Apply (vdW1) to get i such that $C_{i} \cap \mathbb{N}$, hence C_{i}, contains an arithmetic progression of length k.
$(\mathbf{v d W} \mathbf{1} *) \Rightarrow(\mathbf{v d W} \mathbf{1})$ Let $r \in \mathbb{Z}_{+}$and $\mathbb{N}=\bigcup_{i=1}^{r} C_{i}$. By taking $D_{i}:=C_{i} \cup\left(-C_{i}\right)$, we get a partition $\mathbb{Z}=\bigcup_{i=1}^{r} D_{i}$. By $\left(\mathbf{v d W} 1^{*}\right)$, there exists $i \in[1, r]$ with the property that D_{i} contains an arithmetic progression of length $2 k-1$. Hence, either C_{i} or $-C_{i}$ contains an arithmetic progression of length k. Remark now that $\{a, a+d, \ldots, a+(k-1) d\} \subseteq-C_{i}$ iff $\{-a,-a-d, \ldots,-a+(k-1)(-d)\} \subseteq C_{i}$.
The remaining implications follow similarly.
(S5.2) Let us consider the following statement
(*) Let (X, T) be a TDS and $\left(U_{i}\right)_{i \in I}$ be an open cover of X. Then there exists an open set $U_{i_{0}}$ in this cover such that $U_{i_{0}} \cap T^{-n}\left(U_{i_{0}}\right) \neq \emptyset$ for infinitely many n.
(i) Prove (*) in two ways:
(a) applying Birkhoff Recurrence Theorem.
(b) using the Infinite Pigeonhole Principle (IPP): Whenever \mathbb{N} is coloured into finitely many colours, one of the colour classes is infinite.
(ii) Deduce IPP from $\left({ }^{*}\right)$.

Proof. (i) For every $i \in I$, let $C_{i}=\left\{n \geq 1 \mid U_{i} \cap T^{-n}\left(U_{i}\right) \neq \emptyset\right\}$.
(a) Apply Birkhoff Recurrence Theorem 1.6.10 to get an almost periodic point $x \in$ X. Since $X=\bigcup_{i \in I} U_{i}$, we have that $x \in U_{i_{0}}$ for some $i_{0} \in I$. If $n \in \operatorname{rt}\left(x, U_{i_{0}}\right)$, then $x \in U_{i_{0}} \cap T^{-n}\left(U_{i_{0}}\right)$, hence $n \in C_{i_{0}}$. Thus, $r t\left(x, U_{0}\right) \subseteq C_{i_{0}}$. Since $r t\left(x, U_{i_{0}}\right)$ is syndetic, hence infinite, we conclude that $C_{i_{0}}$ is infinite too.
(b) As X is compact, there is a finite subcover $X=\bigcup_{k=1}^{r} U_{i_{k}}$ of X. Let $x \in X$ be $\underset{r}{\operatorname{arbitrary}}$ and define $D_{k}:=\left\{n \geq 0 \mid T^{n} x \in U_{i_{k}}\right\}$ for all $k=1, \ldots, r$. Then $\mathbb{N}=\bigcup_{k=1}^{r} D_{k}$, so we can apply (IPP) to get the existence of K such that D_{K} is
infinite. Let $N:=\min D_{K}$ and $y:=T^{N} x$. We get that $y \in U_{i_{K}}$ and for all $n \in D_{K} \backslash\{N\}$, we have that $n-N \geq 1$, and $T^{n-N} y=T^{n} x \in U_{i_{K}}$. Hence, $n \in D_{K} \backslash\{N\}$ implies $n-N \in C_{i_{K}}$, so $C_{i_{K}}$ is infinite.
(ii) Let $r \geq 1$ and let $\mathbb{N}=\bigcup_{i=1}^{r} D_{i}$ be a finite partition of \mathbb{N}. Set $W=\{1,2, \ldots, r\}$ and consider the full shift $\left(W^{i=1}, T\right)$. Let $\gamma \in W^{Z}$ be defined by:

$$
\gamma_{n}= \begin{cases}i & \text { if } n \geq 0 \text { and } n \in D_{i} \\ \text { arbitrarily } & \text { if } n<0\end{cases}
$$

Let $X:=\overline{\left\{T^{n} \gamma \mid n \geq 0\right\}}$ be the orbit closure of γ and consider the subsystem $\left(X, T_{X}\right)$. Consider the elementary cylinders $C_{0}^{i}, i \in W$. Then $W^{\mathbb{Z}}=\bigcup_{i \in W} C_{0}^{i}$, so we get an open cover $X=\bigcup_{i \in W}\left(C_{0}^{i} \cap X\right)$ of X. Apply now (*) to get $i_{0} \in W$ such that

$$
A=\left\{n \geq 1 \mid C_{0}^{i_{0}} \cap X \cap T^{-n}\left(C_{0}^{i_{0}} \cap X\right) \neq \emptyset\right\}
$$

is infinite.
For every $n \in A$, there exists $\mathbf{x} \in X$ such that $x_{0}=i_{0}$ and $x_{n}=\left(T^{n} \mathbf{x}\right)_{0}=i_{0}$. Let $k=n+1$. Since $\mathbf{x} \in X$, there exists $M_{n} \in \mathbb{N}$ such that

$$
d\left(\mathbf{x}, T^{M_{n}} \gamma\right)<2^{-k}, \quad \text { hence, } \mathbf{x}_{[-n, n]}=\left(T^{M_{n}} \gamma\right)_{[-n, n]} .
$$

As a consequence, $\gamma_{M_{n}}=\left(T^{M_{n}} \gamma\right)_{0}=x_{0}=i_{0}$, and $\gamma_{M_{n}+n}=\left(T^{M_{n}} \gamma\right)_{n}=x_{n}=i_{0}$. Thus,

$$
B:=\left\{M_{n} \mid n \in A\right\} \cup\left\{M_{n}+n \mid n \in A\right\} \subseteq D_{i_{0}} .
$$

If $\left\{M_{n} \mid n \in A\right\}$ is infinite, then B is infinite. If $\left\{M_{n} \mid n \in A\right\}$ is finite, then there exists $N \in A$ such that for all $p \in A, p \geq N$, we have that $M_{p}=M_{N}$. It follows that the set $\left\{M_{p}+p \mid p \in A, p \geq N\right\}=M_{N}+\{p \in A \mid p \geq N\}=M_{N}+(A \backslash[0, N-1])$ is infinite. We get again that B is infinite.
It follows that $D_{i_{0}}$ is infinite too.

